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Abstract5

The Hasson Lab in the Princeton Neuroscience Institute has developed a novel pipeline for the collection6

of high quality intracranial data for understanding neural representations of language. Particular, they have7

worked on a collecting and preprocessing a large dataset of high quality speech and Electrocorticography8

(ECoG) recordings of two patients in the NYU medical epilepsy unit. In this paper, I use this dataset to build9

a semantic encoding model by using contextualised word embeddings derived from a pre-trained Bidirec-10

tional Encoder Representations from Transformers (BERT) model. My aim is to (a) explore the effect of11

incorporating context on the overall performance of the encoding model, (b) find the temporal lag with the12

highest correlation for production and comprehension after incorporating context and (c) compare the perfor-13

mance of contextualized embeddings extracted from 4 different layers (BERT). The results of this study will14

improve our understanding of both computational and neurological semantic representations of language.15

Any improvements introduced to the semantic encoding model using ECoG data will (a) enhance our under-16

standing of sensitivity to context in the human cerebral cortex and (b) yield significant improvements in the17

performance of brain-computer interfaces (BCIs) for patients with neurological impairment.18

1 Introduction19

Semantic encoding models of the brain help us better understand both computational and neurological repre-20

sentations of language. Previous studies have demonstrated the importance of such encoding models in the21

development of brain-computer interfaces (BCI) Leuthardt et al. (2006); Merel et al. (2015) and in increasing22

our understanding of neural representation of semantic meaning Huth et al. (2016). In the development of BCIs,23

previous work has also shown that the incorporation of Electrocorticographic (ECoG) data is particularly ef-24

fective in enhancing the performance of the interfaces, including faster user training and communication rates.25

Leuthardt et al. (2006); Wilson et al. (2006) Improvements in the performance of BCIs could yield vital benefits26

for patients with neurological impairment. Leuthardt et al. (2006)27

In this paper, I contribute to the work being done in the Hasson lab at the Princeton Neuroscience Institute, to28

build a language encoding model for the brain using large amounts of high quality Electrocorticography (ECoG)29

data, with the aim to explore the temporal dynamics of meaning formation in the brain. The lab has been building30
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this encoding model using word-level embedding vectors derived from GloVe. My particular contribution is to31

incorporate context into this encoding model by using contextual word embeddings instead of independent word32

embedding (GloVe), derived from the hidden layers of Googleâs state of the art bidirectional language model,33

BERT.34

In this paper, my aim is to (a) explore the effect of incorporating context on the overall performance of the35

encoding model, (b) find the temporal lag with the highest correlation for production and comprehension after36

incorporating context and (c) compare the performance of contextualized embeddings extracted from 4 different37

layers of the Bidirectional Encoder Representations from Transformers (BERT). My goal is to improve the38

current encoding model developed by the Hasson lab by discovering a higher correlation after incorporating39

contextual word embeddings derived from BERT. My secondary goal is to discover what effect this context has40

on the temporal lag during encoding of production and comprehension. I hypothesize that incorporating context41

would increase the negative lag for production and decrease the positive lag for comprehension, given that the42

non-contextualized highest correlation production lag is negative, i.e. before the word onset and positive, i.e.43

after the word onset for comprehension.44

2 Problem background and related work45

A lot of previous work has been done in developing semantic encoding models for the brain using word-46

vectors to represent the meaning of individual words. These studies have demonstrated the effectiveness of47

using word2vec or GloVe generated word vectors to represent semantic meaning as it is mapped in the human48

brain Huth et al. (2016); Jain & Huth (2018); Pereira et al. (2018) However, there are quite a few areas unex-49

plored by previous work done in this area. Firstly, by using word-level embedding vectors, most of these studies50

ignore the effect of context on the semantics of a single word. de Heer et al. (2017); Huth et al. (2016); Pereira51

et al. (2018) Each word has one unique embedding, regardless of the context. While, as we know from everyday52

life, significant semantic differences occur between the same words in different contexts (example in footnotes)53

In fact, previous studies have shown that almost all regions of the human cerebral cortex have varying degrees54

of dependencies on the context of incoming information. Jain & Huth (2018); Wehbe et al. (2014) Secondly,55

previous language encoding studies do not account for the temporal dynamic of the formation of semantic rep-56

resentation in the brain. Intuitively, we know that we often think of a word before saying it, and sometimes it57

takes us a while to catch from someone’s spoken words what they actually mean. Thirdly, there is a lack of58

availability of large amounts of data to build such brain encoding models, so most previous studies have focused59

on limited amounts of data with only comprehension Jain & Huth (2018) or production of very limited range of60

vocabulary. The Hasson lab has been working on developing a novel pipeline to get access to large amounts of61

high quality data of ECoG recordings during natural speech production and comprehension. This big amount of62

data is invaluable in building better encoding models.63

The Hasson lab has been working on using this large amount of high quality data to build language encoding64

models that explore the temporal dynamic of the formation of semantic representation in the brain. I joined the65
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team with the idea to incorporate context using contextual embedding vectors derived from Googleâs state-of-66

the-art bidirectional language model, BERT, hoping to improve the current encoding model.67

Two recent studies attempted to incorporate context into language encoding models. Jain & Huth (2018); Jat68

et al. (2019) One of these showed significant improvement in the performance of an fMRI-based language69

encoding model for comprehension of narrated text after incorporating context using contextual embeddings de-70

rived from a small, self-trained Long-Short Term Memory Language Model. Jain & Huth (2018) Another study71

showed that sentence level representations derived from BERT correlate strongly with MEG brain responses to72

reading syntactically and semantically simple sentences. Jat et al. (2019) These results indicate that incorpo-73

rating context will likely improve the performance of the encoding model being developed in the Hasson Lab.74

The availability of large amount of high quality data for both natural speech production and comprehension, and75

the exploration of the temporal dynamic in this encoding model make this study unique from previous work on76

incorporating context into language encoding models.77

3 Approach78

I introduced a new theoretical approach to the encoding model being developed in the Hasson lab, that of79

incorporating context into the model to study its effects on the temporal lags and the overall model performance.80

In terms of the design, I incorporated context by extracting contextualized word vectors from the hidden layers81

of Googleâs pre-trained bidirectional language model, BERT.82

Figure 1: Left A: A unidirectional language model, where predicting that the next word in the sequence is ’to’ is done only in the context of the words to
the left. Left B: A bidirectional language model, where predicting the the current word in the sequence is ’to’ is done considering the context of the the
words on both sides. Right: Building a linear model with a temporal lag means using the embedding for the word said at tms to predict the brain signal
at (t + φ)ms where φ is the value of some lag in the range −2000ms to +2000ms



FALL 2019, JUNIOR IW nnadeem, 4 of 12

The primary task of a language model is to predict the next word in a sequence of words, and they are subse-83

quently used in a wide range of NLP tasks. Several previous studies have found that the representation of words84

in the hidden layers of these language models can be used as contextualized word embeddings. Jain & Huth85

(2018); Jat et al. (2019) This is because the way the language model learns to predict words in a sequence is86

by taking into account the previous words, and therefore at every step a language model needs to incorporate87

information about the words that have been seen so far. Earlier language models are unidirectional, which means88

that the current word is represented only in the context of the words to its left, as seen in Figure 1A. However,89

bidirectional language models have been shown to be much more powerful, because intuitively the meaning of90

a word in a sentence does not depend only on the words to its left (Figure 1B). BERT is an example of such a91

bidirectional language model.92

BERT is composed of a stack of transformer encoders, with each encoder containing a self-attention layer and a93

feed-forward neural network layer. Devlin et al. (2018); Google (2019) The self-attention layer is most crucial94

in the incorporation of context, because its task is to learn which parts of the sentence to pay âattentionâ to,95

i.e. what word dependencies exist. For example, in the sentence, âthe girl was walking when a man bumped96

into herâ, the self-attention layer will learn that the âherâ at the end of the sentence refers to âthe girlâ at the97

beginning.98

Each encoder layer in the BERT stack outputs a feature vector for each word in the sentence, and the output99

vectors from each layer serve as the input vectors for the next encoder layer. The feature vectors from any100

of these layers can be used as a contextualized embedding vector for the words because these feature vectors101

contain information about the word dependencies in the sentence discovered in the self-attention layer. Devlin102

et al. (2018); Google (2019)103

The open source BERT has been pre-trained in a semi-supervised manner on a massive text corpus. It has been104

shown to perform extremely well on downstream NLP tasks after being âfine tunedâ on a small dataset for a105

given task. Though, in the case of our brain encoding model, the actual transcribed corpus was not large enough106

for me to use it for fine tuning the pre-trained BERT model. However, the original paper introducing BERT107

(cite) mentions that even without fine tuning, a pre-trained BERT model can be used to extract feature vectors108

for a given text which can subsequently be used as word embeddings incorporating context. Devlin et al. (2018);109

Google (2019); Jat et al. (2019)110

My purpose is to study the effect of context on the temporal dynamics of semantic encoding in the brain.111

This idea is displayed more clearly in Fig 2. We try using a linear model to predict the brain signal from the112

contextualized word embedding at a range of different temporal lags relative to the onset of the word. We then113

look for the temporal lag with the highest Pearson correlation (r) value. This exploration of temporal lag was114

already being done in the Hasson lab with word-level non-contextual GloVe embeddings. My approach is to do115

the same analysis but with the BERT-derived contextualized word embeddings instead.116

In the ideal case, incorporating context using BERT should increase the lag for production, because the contex-117

tualized word embedding should contain information about words well before their onset due to the âcontextâ.118

In the case of speech production, I would expect the lag to decrease, i.e. get closer to the onset of the word or119
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Figure 2: Diagram explaining the architecture of Google’s Bidirectional Encoder Representations from Transformers (BERT) language model. BERT
is composed of a stack of transformer encoders, with each encoder containing a self-attention layer and a feed-forward neural network layer. The self-
attention layer learns word dependencies in the given sentence. The encoder layer outputs a feature vector corresponding to each word in the sentence.
This feature vector contains information about the inter-word dependencies, i.e. context, of each word.

even shift to before the onset of the word because incorporating context in the linear model for comprehension120

should mean having greater information before word onset and therefore earlier understanding.121

4 Implementation122

The following data collection and pre-processing was done by the Hasson Lab to produce the data that I analysed.123

I did not contribute to this step of the process but it was essential in producing the high quality data I required124

for my analysis.125

4.1 Data collection126

Speech and intracranial electroencephalography data was recorded round the clock for around 3-6 days for two127

patients at the NYU Medical Epilepsy Unit. The brain signals were recorded from 100-200 electrode at a128

sampling rate of 512Hz. A total of 42 hours of speech were recorded in total across the patients with 120k129

comprehension words and 120k production words. Ariel Goldstein (2019)130
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4.2 Pre-processing131

The speech recording was transcribed and a speaker identity was assigned to each part of the transcription to132

distinguish production from comprehension. The transcribed text was aligned with the brain signal recording at133

a precision of milliseconds. The data was split into separate conversations to allow for structured analysis. As134

a result, a pre-processed datum file was produced for each conversation, which contained the aligned transcript135

of the entire conversation. This was a text file, formatted as follows: each line had 5 items, the first was a word136

followed by the onset, offset, accuracy and speaker identity of the word. A few âbad wordâ symbols were used137

to indicate words in the data that were incomprehensible in the audio recording. The brain signal recordings138

were similarly split up into the separate conversations and preprocessed to remove noise. Ariel Goldstein (2019)139

To build an encoding model, 300-dimensional GloVe embeddings were used to semantically represent the words.140

160 different temporal lags for windows of 25s in the range of -2000ms to +2000ms relative to the onset of the141

word were used. For each lag value, a linear model predicting the brain signal from the word embedding vector142

was built. The Pearson correlation coefficient (r) was calculated to produce a plot of correlation against temporal143

lags. This plot revealed the temporal lag corresponding to the maximum correlation between the predicted and144

real signal. The above analysis had already revealed that semantic information during production could be145

encoded with maximal correlation up to a few seconds before the actual onset of the word. In the case of146

production, a general trend of maximal correlation post word onset was shown. Ariel Goldstein (2019)147

4.3 My work - Introducing Context148

My contribution was to run the above analysis of lags versus linear correlation using contextualized word em-149

beddings. My hypothesis was that including information about the context would allow maximal correlation150

during production to be achieved even earlier than before, i.e. increased negative lag. In the case of comprehen-151

sion, I hypothesized that incorporating context should bring the point of maximal correlation close to the word152

onset, i.e. decreased positive lag.153

I began by running the existing encoding model on several different non-contextual embeddings available as part154

of open source projects, to assess whether the model performs differently with different non-contextual single155

word-level embeddings. I tried 4 different sets of embeddings, GloVe, one-hot, fastText, and another open156

source embedding trained on the Wikipedia corpus. I did not discover any significant variation in the maximum157

correlation value or the temporal lag corresponding to the maximal correlation.158

To derive contextualized word embeddings, I used a pre-trained uncased BERT-Base Uncased model with 12159

encoder layers, 768 hidden layers, 12-heads and 110M parameters. BERT is the current state-of-the-art lan-160

guage model for natural language processing, with significant improvements from past language models such161

as Transformer and ELMo. (Devlin et al. (2018); Google (2019); Jat et al. (2019)) The first step was to prepare162

the raw transcribed text which BERT would accept as its input. From the earlier pre-processing in the lab, I had163

the formatted datum files for each conversation. I wrote a python script to parse this datum file into another file164

containing only the comprehensible words in the form of sentences. I defined the end of a sentence to be when165

the speaker was switched.166
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Figure 3: Flowchart to describe the work flow of my implementation

I used a Keras environment on a remote GPU to feed this sentence file as input to the pre-trained BERT model,167

and ran the extract features python script available on the open source BERT GitHub repository (Google (2019))168

for the last and third last layer. The script produced a json file as its output which contained information about169

the feature vectors from each layer. I wrote a python script to parse this json file and create a word embedding170

file from one layer at a time.171

The first problem in using these embeddings for encoding the datum was that BERT creates token-based em-172

beddings. This means that it splits up the input sentence into bite-size chunks it can recognize. Each of these173
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chunks is called a token. For example, every contraction like "don’t" is split up into three tokens, "don", "’", and174

"t". BERT outputs an embedding for each token, which means that we have 3 embeddings for one word in the175

case of "don’t".176

To deal with this issue, I wrote a python script that took the tokenized embeddings as input and gave single word177

embeddings as output. This script used an array of indices that mapped each original word in the input sentence178

to an index in the sequence of tokenized embeddings, indicating where the tokens for the original word start179

from. (Google (2019)) This meant that for each word that had multiple embeddings due to BERT’s tokenization,180

I used the embedding for the first token to represent the entire word, and discarded the embeddings for the181

remaining tokens. So in the example of "don’t" given earlier, I used the embedding for "don" and discarded the182

embeddings for "’" and "t". This is one possible way of dealing with tokenization. An equally valid way would183

have been to take the average of the tokenized embeddings and use the result as the embedding for the entire184

word.185

Also as part of the tokenization, BERT appends a [CLS] token to the start and a [SEP] token to the end of every186

sentence. In the same script that I dealt with extra tokenized embeddings, I also removed the embeddings for the187

[CLS] and [SEP] tokens.188

Because I had removed the ’bad words’ from the datum when generating the sentence file which I used as input189

to BERT, I had to create a copy of the original datum file with the lines for bad words removed.190

At this point, theoretically the datum and embedding files should have been aligned. However, I discovered that191

during the pre-processing of the raw data in the lab, certain words had been concatenated in the datum file into192

one line, due to imprecision in the alignment. Certain lines had two or three words all together, followed by the193

onset, offset, accuracy and speaker fields. This concatenation meant that the number of embeddings was greater194

than the number of data points, because the embeddings were generated for each word in the raw transcribed text195

separately. There were several different approaches that I considered to fixing this. Considering the example of196

a datum line containing the concatenated set of words ’you want to’ on a single line, I could:197

1. Similar to the way I resolved the tokenization problem, keep the embedding for the first word in the198

concatenated words, and discard the embeddings corresponding to the remaining words in the set. In the199

above example, I would keep the embedding for ’you’ and use it for that single data point, while discarding200

the embeddings for ’want’ and ’to’.201

2. I could average the embeddings of ’you’, ’want’ and ’to’ and use the resultant vector as the embedding202

for ’you want to’.203

3. I could regenerate a copy of the datum conversation file with all the concatenated words on separate lines204

with the same onset/offset/accuracy/speaker values repeated for each of the separated words.205

4. Or I could simply discard the lines with the concatenated words and their corresponding embeddings, i.e.206

not use those data points at all.207
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Since the proportion of concatenated words was really small, I chose to go with the last option. I wrote a script208

to discard the datum lines which contained concatenated words and also remove the corresponding embeddings209

in the embeddings file.210

At this point most of the datum files were aligned with the embedding files. However, for seven of the conver-211

sations, the alignment between the datum words and the embeddings was still skewed. Upon inspection of the212

pre-processed files, I observed that during the extraction of features using BERT, there were some parts of the213

original datum that did not have an output in the embedding file. There were random snippets in the middle of214

these seven conversations which were absent from the embedding file. The reason behind this remains unclear215

to me, and due to time constraints I did not manage to fix the alignment for these conversations. I discarded216

these ’bad’ conversations and ran my encoding analysis with lags for the remaining conversations that now had217

perfectly aligned datum and embedding files.218

I ran the encoding analysis for 14 electrodes that had been identified to have clean data by the previous Hasson219

lab members. The following technique for building and evaluating the performance of an encoding model at220

varying lags had already been developed in the lab; I adapted the same technique for my analysis. For each221

electrode, I used a linear model to predict the brain signal from the word embedding vector, at different temporal222

lags relative to the onset of the word. The temporal lag values ranged from negative 2000ms to positive 2000ms,223

and occurred at intervals of every 25ms. For the linear model at each temporal lag, I computed the Pearson224

correlation value r. Finally I generated a plot of the correlation values against each temporal lag. I ran the same225

analysis on these âgoodâ conversation using the GloVe embedding that had been used by the Hasson Lab before.226

5 Results227

Figure 4A shows the correlation vs lag plot for one of the electrodes that gave a significant correlation for GloVe228

embeddings. Figure 4B shows the correlation vs lag plot for the same electrode, but with using the contextualized229

word embeddings extracted from BERT. It appears that contrary to my hypothesis, using contextualized word230

embeddings worsened the performance of the encoding model. The signal present using GloVe was lost when231

shifting to contextual embeddings. Because of the lack of high correlation values in the results of the contextual232

embeddings, the temporal lag values corresponding to the maximum correlation does not reveal any significant233

information about the actual temporal dynamics of neural representation of semantic context. Furthermore, the234

results from the two different layers of BERT used to extract contextual embeddings were equally inconclusive.235

There could be several reasons behind the inconclusive results. The original datum files for each conversation236

from the pre-processing step in the lab were in fact âtrimmedâ and did not contain the full content of the original237

conversation. I believe this was because certain parts of the brain signal recording and audio recording were238

not clean enough to be used as part of the data. While this trimming of the content at several different points in239

each of the conversations did not have any significant effect on the linear models built using independent word240

embeddings (GloVe), they did affect my approach. Discarding part of the speech content meant losing part of241

the context, and therefore introducing error into the contextualized word embeddings that were extracted using242

BERT. In addition to this problem, there is another plausible source of error. I extracted contextualized word243
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Figure 4: Left: Pearson Correlation r v. Temporal Lags ms plot of linear encoding models built using GloVe based independent word embeddings. This
result had already been achieved by the Hasson Lab before I joined the team. A maximum correlation value of 0.15 is achieved at 175ms before the
word onset during production and 475ms after the word onset during comprehension. Right: Pearson Correlation r v. Temporal Lags ms plot of linear
encoding models built using BERT based contextual word embeddings. The plot shows an overall drop in the performance of linear encoding models that
use contextual embeddings. Due to the low correlation values, the ’maximal correlation temporal lag’ does not appear to be very distinct from correlation
values at other lags. Therefore the results remain inconclusive on the question of contextual effect on temporal dynamics of semantic representation

embeddings using the pre-trained BERT model. The original paper introducing BERT recommends finetuning244

the pre-trained model for downstream NLP tasks. (BERT paper) As I mentioned earlier, the data corpus was not245

large enough to be used for fine-tuning. However, for the purposes of such encoding models, BERT could be fine-246

tuned on some other large corpus of conversational speech. Since BERT has been pre-trained on regular English247

text and standard grammar, which can differ significantly from conversational English, fine-tuning might in fact248

be an essential step in using BERT for this particular task. A data set consisting of dialogues from screenplays,249

or transcriptions of YouTube interview could be useful for this purpose.250

6 Conclusion251

My results so far show that contrary to my initial hypothesis, introducing context into word embeddings de-252

creases rather than increases the maximum correlation achieved in the linear encoding models. Due to the253

extremely low correlation values, my results do not reveal anything conclusive about my hypothesis that intro-254

ducing context would increase negative lag during production and decrease positive lag during comprehension.255

I was also unable to compare the performance of the encoding model based on word vectors extracted from256

several different layers of BERT. A previous study showed a variation in performance of the encoding model257

depending on which layer the contextualized word embeddings were extracted from. Jain & Huth (2018) The258



FALL 2019, JUNIOR IW nnadeem, 11 of 12

study also mapped which areas of the brain were more sensitive to context than other areas. Jain & Huth (2018)259

I had hoped to compare my results with these previous findings to see whether the sensitivity of specific brain260

areas to context could be confirmed in my results.261

7 Future Work262

The first step in taking this study forward would be to get the full transcribed text of the conversations to263

extract contextual embeddings from and to fine-tune BERT on conversational English data. Another way this264

study could be enhanced by trying one of the alternative options when dealing with BERT’s tokenization, for265

example, by using the average of the token vectors instead of just the first tokenâs vector for a single word. On266

a higher level, this paper attempts to incorporate only single-sentence level context. This means that a word’s267

embedding is informed only by the content of the current speaker’s speech. A step forward from this would be268

to incorporate context of the previous speaker as well, i.e. incorporate context from more than one sentence.269

This analysis could result in fascinating findings, not just in terms of improving the encoding model but also270

revealing the neurological dependency of our speech on that of others communicating with us. Finally, this271

paper aimed to show the effect of incorporating context in language encoding models. A similar approach to272

incorporating context in decoding models would be a useful extension of this project. Such work could yield273

significant improvements in decoding of semantic meaning from neurological data, which would allow for vital274

improvements in brain computer interface (BCI) development.275
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