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Abstract

Several datasets have been created to evaluate LLM performance on mathematical reason-
ing tasks. Performance on these benchmarks is used as a proxy for a model’s math ability
and to rank their capability relative to other models. These rankings play a crucial role for
AIEd practitioners in selecting models for applications like math tutoring. Recent research
has argued that several of these benchmarks have become too saturated, prompting the
creation of new datasets with more difficult tasks. How can we gauge the effectiveness of
these benchmarks for measuring math skills and producing reliable rankings? Leveraging
the psychometric framework of Item Response Theory, we examine three math benchmarks:
GSM8K, MATH, and MathOdyssey. We find that GSM8K and MathOdyssey are not suited
to properly evaluate the current range of frontier model abilities, and are instead suited
to models with lower and higher math abilities respectively. Moreover, current rankings
derived from these benchmarks are unstable and fail to reliably capture the latent math
ability they aim to measure. To remedy these issues, we recommend the integration of IRT
analysis into the process of selecting questions for future benchmarks.
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1. Introduction

Benchmarks have become ubiquitous tools for language model developers to communicate
the level of a model’s ability on a set of tasks. They are often used to compare frontier
models and argue that a new model is “state-of-the-art,” evidenced by higher performance.
Burnell et al. (2023) argue that benchmarks fail for two key reasons: they quantify per-
formance in aggregate metrics and do not provide insight into precise failure instances,
making it difficult to understand the specific capabilities models actually possess. Further-
more, as model abilities increase, benchmarks become outdated (Yu et al., 2023), and there
are growing concerns of training set contamination (Li, 2023). For example, the popular
GSM8K benchmark used to test model ability on grade school math, sees extremely high
levels of performance,1 with top models earning over 90% accuracy. On the other hand, the
MathOdyssey (Fang et al., 2024) dataset, developed to address performance saturation on
GSM8K and training set contamination, sees a top accuracy of only 65%.2
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1. See https://paperswithcode.com/sota/arithmetic-reasoning-on-gsm8k

2. See https://mathodyssey.github.io/
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Given the limitations of current benchmarks, we are interested in answering the following
questions: (1) To what extent do current benchmarks robustly estimate and rank the
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abilities of LLMs? (2) How can we build benchmarks that better inform us of model
abilities, even when model abilities increase?

To answer these questions, we use Item Response Theory (IRT) (Hambleton and Swami-
nathan, 1985), a common educational and psychometric statistical framework, to evaluate
benchmarks for math reasoning in LLMs. Because AIEd systems depend on LLMs’ math
ability to explain math concepts to students (Xu et al., 2024; Wang et al., 2024), it is crucial
to reliably estimate model math ability.

However, several AIEd companies are forced to develop their own benchmarks or to rely
on a small set of informal questions to evaluate their products since prominent benchmarks
are not designed for educational tasks (Wang et al., 2024; Miller and DiCerbo, 2024). As
more benchmarks for AIEd applications are created, our framework provides a method to
test if they effectively estimate the ability of models. Our work offers three main contribu-
tions:

• Extract model response patterns for math tasks to create a large test-taking popula-
tion of LLMs in order to leverage IRT

• Quantitatively evaluate the validity and effectiveness of popular math benchmarks to
discriminate between the abilities of frontier models

• Propose a framework for selecting individual questions that are most effective in dis-
criminating between model ability, which can be generalized to future AIEd bench-
marks

Overall, this framework will be crucial for the valid and effective evaluation of AIEd
system abilities, since it not only evaluates the validity of current benchmarks but also
facilitates the design and evaluation of future benchmarks.

2. Related Work

Our work is related to two key areas of research: creation and evaluation of LLM bench-
marks, particularly in the development of AIEd tools, and use of IRT in NLP research.

2.1. Evaluating LLM Benchmarks

LLM benchmarks aim to standardize the evaluation of rapidly advancing state-of-the-art
models. However, despite the popularity of benchmarks, researchers are calling into question
their efficacy for understanding LLM capabilities (Anwar et al., 2024; Burnell et al., 2023).
Ramesh et al. (2024) point out that because benchmarks evaluate LLMs on discrete tasks,
they will inevitably fail to evaluate all tasks a model is capable of performing (Yu et al.,
2023). Although benchmarks are appealing as a straightforward method to compare models,
they have fundamental weaknesses and have not yet been rigorously validated.

Therefore, it is increasingly important to reliably assess benchmarks and identify which
questions in a given benchmark are capable of providing a good understanding of model
capabilities. Currently, there is a large demand for benchmarks to be created in the AI for
Education space. Miller and DiCerbo (2024) introduces a new benchmark, COMTA, specif-

2

ically for math education. However, given the challenges of creating tests for education-
related abilities, developers of AIEd products often rely on ad-hoc examples or models that
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perform well on standard math reasoning tasks. Thus, there is an opportunity to create
benchmarks for education more mindfully. We turn to IRT to evaluate the validity of math
benchmarks, but the analysis can extend to the creation of benchmarks in many high-impact
domains.

2.2. IRT in NLP

IRT has become a foundational approach in educational testing due to its ability to model
the interaction between individuals’ latent traits and individual test item characteristics
(Linden and Hambleton, 1997; Embretson and Reise, 2000; Chen et al., 2021). Lalor et al.
(2016) apply IRT to create more challenging benchmarks for NLI tasks and Lalor et al.
(2019), use response patterns from an artificial crowd of LSTM models to fit IRT param-
eters. Rodriguez et al. (2021) incorporate the difficulty and discrimination parameters of
individual benchmark questions when ranking models on the SQuaD leaderboard, showing
that this provides a better ranking than accuracy alone. Vania et al. (2021) compare IRT fits
across several English NLU datasets, using response patterns from a range of BERT-based
Transformer models. (Polo et al., 2024) employed IRT parameters to estimate LLM per-
formance efficiently, demonstrating that approximately 100 curated samples could reliably
approximate benchmark accuracy.

Our research expands on prior work in two key ways: (1) We use recent frontier models
rather than traditional NLP or BERT-based models (2) We focus on math benchmarks
due to their significance for the AIEd domain. To handle large modern data sets, we use a
variational Bayesian inference algorithm for fitting IRT models, which has become standard
practice in applications of IRT to NLP (Wu et al., 2020; Vania et al., 2021; Rodriguez et al.,
2021; Lalor et al., 2019).

3. Methods

To evaluate the validity of math reasoning benchmarks, we fit 2-PL IRT models on response
patterns from a population of models on a subset of the GSM8K, MATH and MathOdyssey
benchmarks. We find our IRT models have strong model fit, indicating the validity of our
IRT models in evaluating the discrimination and difficulty of these benchmarks.

3.1. Item Response Theory

Item Response Theory (IRT), a statistical framework widely used in educational and psy-
chological testing due to its ability to model the interaction between an individual’s latent
ability and the characteristics of test items (Hambleton and Swaminathan, 1985; Chen
et al., 2021). Unlike Classical Test Theory (CTT), which evaluates test performance at an
aggregate level (Novick, 1966), IRT estimates parameters for each test item and individual
respondent, enabling a more nuanced analysis.

We use the two-parameter logistic (2PL) model (Edwards, 2009), mathematically defined
as follows:

3

(1)
1

1 + exp[−aj(θi − bj)]
P (xi,j = 1|θi, bj , aj) =
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For a benchmark B and set of models M , θi represents the latent ability of model
i ∈ M , xi,j denotes model i’s response to item j ∈ B, and bj and aj correspond to the
item’s difficulty and discrimination parameters, respectively. Estimating an IRT model
involves deriving the optimal values for θi for each model i, and bj and aj for each test
item j based on observed response patterns - i.e. whether a model answered a given item
correctly or incorrectly. The 2PL IRT model is particularly valuable because it incorporates
the discrimination parameter aj , which quantifies how effectively a test item differentiates
between models of varying abilities.

3.2. Fitting an IRT Model

We use the py-irt python package developed by Lalor and Rodriguez (2023) to leverage
variational inference for IRT parameter estimations. Aligning with configurations explored
in prior work, we employ a vague prior of N (0, 1) for θi and bj , and log ai ∼ N (0, σ2

a) where
σa = 0.25, the lower-end of the range searched in Vania et al. (2021). To assess sensitivity,
we experimented with different prior configurations for σa and found that item and model
parameters estimated under our chosen setup exhibited a high correlation (rθ = 0.99, rb =
0.99, ra = 0.98) with those from alternative setups. This suggests that our prior selection
yields stable parameter estimates. To ensure that the learned IRT fit is reliable we examine
and report the AUC-ROC scores in Appendix A, finding a range from 0.87 to 0.92.

3.3. Data & Model Selection

We focused our experiments on three benchmarks that are used to assess mathematical abil-
ity: GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), and MathOdyssey (Fang
et al., 2024). GSM8K is a prominent dataset for assessing mathematical ability composed
entirely of grade school-level math word problems, while MATH focuses on competition-level
math questions. MathOdyssey is a new dataset that has not been widely used at this time
but contains problems with a diverse range of difficulties, created to provide insight into
emerging capabilities of LLMs and distinguish between increasingly powerful models. We
collect responses for the entire test set of GSM8K and MathOdyssey, and collect responses
to 500 questions of the MATH dataset (the full MATH dataset is not publicly available).
See Appendix B for more information on the benchmark datasets.

Our model selection prioritized models of different sizes (Appendix C), with the pop-
ulations’ number of parameters ranging from 0.5 billion with Qwen2.5-0.5B-Instruct to an
estimated 1 trillion with GPT-4.

A good IRT fit requires a large population of test-takers. To maximize the population
size we simulated three separate test-takers per model using different prompting techniques:
zero-shot with no chain-of-thought (CoT), zero-shot with CoT, and few-shot with CoT.
These prompting techniques have been shown to improve a model’s reasoning skills (Wei
et al., 2023). Our prompting strategies can be found in Appendix D.

4. Results and Analysis

4

As expected, the models perform extremely well on the GSM8K benchmark, while perfor-
mance on MATH and MathOdyssey is poorer. This discrepancy in performance is seen in
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the model ability estimation by our 2-PL IRT models for the GSM8K, MATH, and Math-
Odyssey dataset, shown in Figure 1. For almost all models, the estimated ability on GSM8K
is higher than that of MATH and MathOdyssey.

Figure 1: Estimated Model Abilities for 2-PL IRT Model on GSM8k, MATH, and Math-
Odyssey

4.1. Robustness of Benchmark Ability Estimation

To evaluate how much information a given item provides we use the Item Information
Function (IIF) based on item discrimination and the probabilities of a correct or incorrect
response. Equation (2) calculates the IIF for a 2-PL IRT model where Pj(θ, bj , aj) is
the probability a model of ability θ will correctly answer item j and Qj(θ, bj , aj) is the
probability of an incorrect response. Because our analysis is more concerned with evaluating
how useful a benchmark is overall, we calculate Equation (3), the Test Information Curve
(TIC), which is the sum of Equation (2) over all items. Intuitively, the TIC tells us how
informative a test is given the ability of a test-taker.

Ij(θ, bj , aj) = a2jPj(θ, bj , aj)Qj(θ, bj , aj) (2)

T (θ,b,a) =
∑
j

Ij(θ, bj , aj) (3)

The results from our IRT analysis confirm our hypothesis that GSM8K overall does not
give us much information about the ability of state-of-the-art models. As seen in Figure 2(a),
models with θ = 0 achieve maximum test information. However, the learned θ values of the

5

different models are skewed much higher, with a significant population of models having
θ ≥ 1. The rest of the TICs in Figure 2 display evidence that the more difficult benchmarks
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(a) GSM8K (b) MATH (c) MathOdyssey

Figure 2: Test Information Curves for GSM8K, MATH, and MathOdyssey benchmarks
alongside the respective model ability distributions for both IRT fits. The TIC
tells us how much information the test provides about a test-taker with a given
ability. Because model abilities are fit based on the response patterns for each
benchmark, ability range varies with benchmark difficulty. We find that MATH
is best suited for the models in our setup.

of MATH and MathOdyssey are better suited for the current suite of LLMs. However, as
model abilities improve, MATH and MathOdyssey may become ill-suited to differentiate
between models. Using IRT provides us with a systematic way of analyzing the effectiveness
of benchmarks, and can also help us select the most difficult and discriminating questions
out of a dataset.

4.2. Rethinking Rankings

Leaderboards are commonly used to compare the performance of models and make conclu-
sions on their relative ability based on overall accuracy on a specific benchmark dataset.
Building on Rodriguez et al. (2021), we explore the stability of such rankings. We split
the dataset questions into three groups - high, medium, and low - based on their estimated
discrimination parameter, which measures the ability of a question to discriminate between
model abilities. We then compare model rankings derived from accuracy on each subset to
those based on overall accuracy and the estimated ability θi.

Figure 3 shows how the rankings of the top 20 models by ability on each benchmark
shift when using different metrics or subsets of questions. The rankings remain relatively
stable between the overall accuracy and the estimated abilities (θ), but fluctuate when based
on performance on high discrimination questions and low discrimination questions. For a
benchmark to confidently estimate relative model ability, model rankings should remain
stable across different question subsets of the same benchmarks.

For GSM8K, we observe stability in the very top few models, however, we see significant
fluctuation for several models when ranked on the highest discrimination subset. We see
extreme fluctuations when ranking by low discrimination questions, indicating their inability
to reliably distinguish between model abilities. We hypothesize that the low discrimination
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questions capture noise rather than ability. However, for MATH, we see that rankings are
relatively stable between ability, overall accuracy, and accuracy on the high discrimination
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Figure 3: Changes in model rankings when using different metrics and benchmark subsets.
This chart only shows the change in rankings for the top 20 models based on
estimated model ability on each benchmark. We see that model rankings change
when using highly discriminative subsets in comparison to overall benchmark
accuracy or estimated model ability (θi).

subset. We hypothesize that this is due to the goodness-of-fit of the TIC with the MATH
benchmark, shown in Figure 2(b), meaning that the MATH benchmark is well-suited for our
model suite. We again see fluctuation in ranking on low discrimination questions. Finally,
for MathOdyssey, we observe that several of the top performing models collapse to the same
rank when compared based on the high discrimination subset, indicating that differences in
ranking based on overall accuracy may be spurious and unreliable.

The instability in rankings across benchmarks when comparing model rank based on
overall benchmark accuracy, estimated ability θ, and benchmark subsets accuracy makes it
challenging for practitioners to effectively conclude that one model is better than another at
the latent ability we are measuring (ability to do mathematical reasoning). Our framework
grounds ability estimation and ranking in highly discriminative questions, which are better
able to discriminate between model abilities in comparison to overall accuracy.

5. Discussion

7

Our findings show that current math benchmarks fall short in estimating model abilities
and distinguishing between frontier models. Given that AIEd systems for math instruction
depend heavily on choosing models with high mathematical reasoning proficiency, develop-
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ers need robust and reliable methods for ranking model performance in this domain. Small
fluctuations in accuracy on math benchmarks between SOTA models are not sufficient.
Additionally, when designing benchmarks for future AIEd systems, stakeholders must thor-
oughly understand model capabilities to avoid adverse impacts on students and teachers
(Holstein and Doroudi, 2021). Using IRT, developers can create benchmarks that more
effectively differentiate between model abilities by selecting test items that have high dis-
crimination parameters, providing more reliable performance rankings. We propose using
IRT to curate subsets of benchmarks that include items based on their information value
for models within a specific ability range, mirroring how educational tests are designed us-
ing IRT. IRT can also be used to evaluate new questions, measuring their discrimination
and difficulty parameter to assess whether they should be added to an existing benchmark.
This shows promise in both improving the discrimination of benchmarks and increasing
their difficulty over time. Future research should validate this approach by curating subsets
of benchmarks using IRT and testing their reliability and usefulness for downstream tasks.

5.1. Limitations

While we tested the reliability of our IRT fit, there are a few limitations of the data this
fit relies on. First, we ran each model on each item only once. Future work should prompt
each model several times to account for prompt sensitivity. Our method for checking the
models’ responses also relied on either heuristics or evaluation by GPT-4o, introducing the
risk that a model’s response may have been mischaracterized. Lastly, except for OpenAI
models, we limited our largest model to 14B parameters due to compute constraints, but
our IRT fit may have been stronger had we used a more even range of model sizes.

6. Conclusion

Given recent research calling into question the validity of popular math benchmarks for
LLMs, we use IRT to evaluate the effectiveness of these benchmarks at discriminating
between several SOTA models. We find that (a) GSM8K misses the mark given the current
landscape, providing limited information for the current range of SOTA abilities and (b)
model rankings based on overall accuracy can be unreliable across datasets. Our method
also serves as a framework for evaluating the appropriateness of a benchmark for a range
of model abilities and better estimating relative model ranks using highly discriminative
questions. Our findings point to the promise of using IRT in the future development and
evaluation of benchmarks as model abilities improve.
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Appendix A. IRT Model Fit

Figure 4 shows the ROC curves for our IRT fit on our three benchmarks of interest. We
find AUC-ROC scores ranging from 0.87 to 0.92, indicating a reliable IRT fit.

(a) GSM8K (b) MATH (c) MathOdyssey

Figure 4: ROC Curves for the IRT Fit on (a) GSM8K response patterns with AUC-ROC
Score = 0.8899 (b) MATH response patterns with AUC-ROC Score = 0.8709 and
(c) MathOdyssey response patterns with AUC-ROC Score = 0.9207.

Appendix B. Benchmark Information

The table below provides a brief overview of the three benchmarks.

Dataset Year Description Sample Size

GSM8k 2021 Middle-school level math word
problems

1318

MATH 2021 Competition-level math problems.
We use MATH-500, a subset of the
original MATH dataset created by
Lightman et al. (2023).

500

MathOdyssey 2024 High School, University, &
Olympiad-level math problems

387

Appendix C. Models

The table below details information about the models used as learners in our work. The
suffix ’ fs cot’ indicates that the few-shot with chain-of-thought (CoT) version of the prompt
was used, whereas zs cot’ indicates that the zero-shot CoT version was used. A ’-’ indicates
that we could not find this information published, or that it is unknown to the public.

Index
Learner
Name

Num
Params

Context
Length

Family
Release
Date

1 Qwen2.5-0.5B-Instruct 0.49 32768 Qwen 09 2024
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Index
Learner
Name

Num
Params

Context
Length

Family
Release
Date

2 Qwen2.5-0.5B-Instruct zs cot 0.49 32768 Qwen 09 2024

3 Qwen2.5-0.5B-Instruct fs cot 0.49 32768 Qwen 09 2024

4 Qwen2.5-1.5B-Instruct 1.54 32768 Qwen 09 2024

5 Qwen2.5-1.5B-Instruct zs cot 1.54 32768 Qwen 09 2024

6 Qwen2.5-1.5B-Instruct fs cot 1.54 32768 Qwen 09 2024

7 Qwen2.5-3B-Instruct 3.09 32768 Qwen 09 2024

8 Qwen2.5-3B-Instruct zs cot 3.09 32768 Qwen 09 2024

9 Qwen2.5-3B-Instruct fs cot 3.09 32768 Qwen 09 2024

10 Qwen2.5-7B-Instruct 7.61 131072 Qwen 09 2024

11 Qwen2.5-7B-Instruct zs cot 7.61 131072 Qwen 09 2024

12 Qwen2.5-7B-Instruct fs cot 7.61 131072 Qwen 09 2024

13 Qwen2.5-14B-Instruct 14.7 131072 Qwen 09 2024

14 Qwen2.5-14B-Instruct zs cot 14.7 131072 Qwen 09 2024

15 Qwen2.5-14B-Instruct fs cot 14.7 131072 Qwen 09 2024

16 OLMo-7B-Instruct 6.89 2048 OLMo 02 2024

17 OLMo-7B-Instruct zs cot 6.89 2048 OLMo 02 2024

18 OLMo-7B-Instruct fs cot 6.89 2048 OLMo 02 2024

19 OLMoE-1B-7B-0924-Instruct 6.92 - OLMo 09 2024

20 Llama-3.2-1B-Instruct 1.24 128000 Llama 09 2024

21 Llama-3.2-1B-Instruct zs cot 1.24 128000 Llama 09 2024

22 Llama-3.2-1B-Instruct fs cot 1.24 128000 Llama 09 2024

23 Llama-3.2-3B-Instruct 3.21 128000 Llama 09 2024

24 Llama-3.2-3B-Instruct zs cot 3.21 128000 Llama 09 2024

25 Llama-3.2-3B-Instruct fs cot 3.21 128000 Llama 09 2024

26 Meta-Llama-3-8B-Instruct 8.03 8000 Llama 04 2024

27 Meta-Llama-3-8B-Instruct fs cot 8.03 8000 Llama 04 2024

28 Meta-Llama-3-8B-Instruct zs cot 8.03 8000 Llama 04 2024

29 Llama-3.1-8B-Instruct 8.03 128000 Llama 07 2024

30 Llama-3.1-8B-Instruct zs cot 8.03 128000 Llama 07 2024

31 Llama-3.1-8B-Instruct fs cot 8.03 128000 Llama 07 2024

32 Phi-3.5-mini-instruct 3.82 128000 Phi3 08 2024

33 Phi-3.5-mini-instruct zs cot 3.82 128000 Phi3 08 2024

13
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Index
Learner
Name

Num
Params

Context
Length

Family
Release
Date

34 Phi-3.5-mini-instruct fs cot 3.82 128000 Phi3 08 2024

35 Phi-3-mini-4k-instruct 3.82 4000 Phi3 06 2024

36 Phi-3-mini-4k-instruct zs cot 3.82 4000 Phi3 06 2024

37 Phi-3-mini-4k-instruct fs cot 3.82 4000 Phi3 06 2024

38 Phi-3-medium-4k-instruct 14 4000 Phi3 06 2024

39 Phi-3-medium-4k-instruct zs cot 14 4000 Phi3 06 2024

40 Phi-3-medium-4k-instruct fs cot 14 4000 Phi3 06 2024

41 Mistral-7B-Instruct-v0.1 7.24 - Mistral 09 2023

42 Mistral-7B-Instruct-v0.1 zs cot 7.24 - Mistral 09 2023

43 Mistral-7B-Instruct-v0.1 fs cot 7.24 - Mistral 09 2023

44 Mistral-7B-Instruct-v0.3 7.25 - Mistral 05 2024

45 Mistral-7B-Instruct-v0.3 zs cot 7.25 - Mistral 05 2024

46 Mistral-7B-Instruct-v0.3 fs cot 7.25 - Mistral 05 2024

47 Ministral-8B-Instruct-2410 8.19 - Mistral 10 2024

48 Ministral-8B-Instruct-2410 zs cot 8.19 - Mistral 10 2024

49 Ministral-8B-Instruct-2410 fs cot 8.19 - Mistral 10 2024

50 Mistral-Nemo-Instruct-2407 8.19 - Mistral 10 2024

51 Mistral-Nemo-Instruct-2407 zs cot 12.2 - Mistral 07 2024

52 Mistral-Nemo-Instruct-2407 fs cot 12.2 - Mistral 07 2024

53 gpt-3.5-turbo-1106 - 16385 OpenAI -

54 gpt-3.5-turbo - 16385 OpenAI -

55 gpt-4-0125-preview - 128000 OpenAI -

56 gpt-4-0613 - 8192 OpenAI 06 2023

57 gpt-4-1106-preview - 128000 OpenAI -

58 gpt-4-turbo-2024-04-09 - 128000 OpenAI 09 2024

59 gpt-4o-2024-05-13 - 128000 OpenAI 05 2024

60 gpt-4o-2024-08-06 - 128000 OpenAI 08 2024

61 gpt-4o-mini-2024-07-18 - 128000 OpenAI 07 2024

62 gpt-4o - 128000 OpenAI 08 2024
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Appendix D. Prompting Strategies

The following prompts (Figure 5(a), Figure 5(b), Figure 5(c)) were used across all models.
For few-shot CoT prompting we used the 3 questions selected from the dataset of interest.
We confirmed that these questions were not in the samples selected for evaluation.

Appendix E. Extracting Model Answers

For GSM8K and MATH, we extract the final number from the model’s response, using
this as the models “final answer.” We prompted models to use a specific format when
answering questions, but the small size and ability of some models made response structure
inconsistent, forcing us to use this heuristic. We validated this mechanism for scraping
answers by manually inspecting a subset of the responses. We then used regular expression
matching to check model answers.

Since MathOdyssey is a significantly more challenging benchmark and the questions are
represented in Latex rather than plain-text formatting, the developers of the benchmark
use LLM-supported answer checking (Fang et al., 2024), so we also check model responses
using OpenAI GPT-4o.
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(a) Base prompt used

(b) Zero-Shot CoT prompt used

(c) Few-Shot CoT prompt used. Examples were substituted in based
on the dataset and kept consistent across all models.

Figure 5: Prompts used to collect model response patterns. Each model was prompted once
for each question using three techniques.
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